Viewers extract the mean from images of the same person: A route to face learning.

نویسندگان

  • Robin S S Kramer
  • Kay L Ritchie
  • A Mike Burton
چکیده

Research on ensemble encoding has found that viewers extract summary information from sets of similar items. When shown a set of four faces of different people, viewers merge identity information from the exemplars into a representation of the set average. Here, we presented sets containing unconstrained images of the same identity. In response to a subsequent probe, viewers recognized the exemplars accurately. However, they also reported having seen a merged average of these images. Importantly, viewers reported seeing the matching average of the set (the average of the four presented images) more often than a nonmatching average (an average of four other images of the same identity). These results were consistent for both simultaneous and sequential presentation of the sets. Our findings support previous research suggesting that viewers form representations of both the exemplars and the set average. Given the unconstrained nature of the photographs, we also provide further evidence that the average representation is invariant to several high-level characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

بهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکه‌های عصبی

This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for...

متن کامل

Variability in photos of the same face.

Psychological studies of face recognition have typically ignored within-person variation in appearance, instead emphasising differences between individuals. Studies typically assume that a photograph adequately captures a person's appearance, and for that reason most studies use just one, or a small number of photos per person. Here we show that photographs are not consistent indicators of faci...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2015